Control of Cdc6 accumulation by Cdk1 and MAPK is essential for completion of oocyte meiotic divisions in Xenopus.

نویسندگان

  • Enrico M Daldello
  • Tran Le
  • Robert Poulhe
  • Catherine Jessus
  • Olivier Haccard
  • Aude Dupré
چکیده

Vertebrate oocytes proceed through the first and the second meiotic division without an intervening S-phase to become haploid. Although DNA replication does not take place, unfertilized oocytes acquire the competence to replicate DNA one hour after the first meiotic division by accumulating an essential factor of the replicative machinery, Cdc6. Here, we show that the turnover of Cdc6 is precisely regulated in oocytes to avoid inhibition of Cdk1. At meiosis resumption, Cdc6 is expressed but cannot accumulate owing to a degradation mechanism that is activated through Cdk1. During transition from the first to the second meiotic division, Cdc6 is under the antagonistic regulation of B-type cyclins (which interact with and stabilize Cdc6) and the Mos-MAPK pathway (which negatively controls Cdc6 accumulation). Because overexpressing Cdc6 inhibits Cdk1 reactivation and drives oocytes into a replicative interphasic state, the fine-tuning of Cdc6 accumulation is essential to ensure two meiotic waves of Cdk1 activation and to avoid unscheduled DNA replication during meiotic maturation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The phosphorylation of ARPP19 by Greatwall renders the auto-amplification of MPF independently of PKA in Xenopus oocytes.

Entry into mitosis or meiosis relies on the coordinated action of kinases and phosphatases that ultimately leads to the activation of Cyclin-B-Cdk1, also known as MPF for M-phase promoting factor. Vertebrate oocytes are blocked in prophase of the first meiotic division, an arrest that is tightly controlled by high PKA activity. Re-entry into meiosis depends on activation of Cdk1, which obeys a ...

متن کامل

Dual-mode regulation of the APC/C by CDK1 and MAPK controls meiosis I progression and fidelity

Female meiosis is driven by the activities of two major kinases, cyclin-dependent kinase 1 (Cdk1) and mitogen-activated protein kinase (MAPK). To date, the role of MAPK in control of meiosis is thought to be restricted to maintaining metaphase II arrest through stabilizing Cdk1 activity. In this paper, we find that MAPK and Cdk1 play compensatory roles to suppress the anaphase-promoting complex...

متن کامل

CDC6 controls dynamics of the first embryonic M-phase entry and progression via CDK1 inhibition.

CDC6 is essential for S-phase to initiate DNA replication. It also regulates M-phase exit by inhibiting the activity of the major M-phase protein kinase CDK1. Here we show that addition of recombinant CDC6 to Xenopus embryo cycling extract delays the M-phase entry and inhibits CDK1 during the whole M-phase. Down regulation of endogenous CDC6 accelerates the M-phase entry, abolishes the initial ...

متن کامل

Developmental control of oocyte maturation and egg activation in metazoan models.

Production of functional eggs requires meiosis to be coordinated with developmental signals. Oocytes arrest in prophase I to permit oocyte differentiation, and in most animals, a second meiotic arrest links completion of meiosis to fertilization. Comparison of oocyte maturation and egg activation between mammals, Caenorhabditis elegans, and Drosophila reveal conserved signaling pathways and reg...

متن کامل

O-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation

Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 128 14  شماره 

صفحات  -

تاریخ انتشار 2015